In Some Curved Spaces, One Can Solve NP-Hard Problems in Polynomial Time
نویسندگان
چکیده
In the late 1970s and the early 1980s, Yuri Matiyasevich actively used his knowledge of engineering and physical phenomena to come up with parallelized schemes for solving NP-hard problems in polynomial time. In this paper, we describe one such scheme in which we use parallel computation in curved spaces.
منابع مشابه
Parallelizing Assignment Problem with DNA Strands
Background:Many problems of combinatorial optimization, which are solvable only in exponential time, are known to be Non-Deterministic Polynomial hard (NP-hard). With the advent of parallel machines, new opportunities have been emerged to develop the effective solutions for NP-hard problems. However, solving these problems in polynomial time needs massive parallel machines and ...
متن کاملTenacity and some other Parameters of Interval Graphs can be computed in polynomial time
In general, computation of graph vulnerability parameters is NP-complete. In past, some algorithms were introduced to prove that computation of toughness, scattering number, integrity and weighted integrity parameters of interval graphs are polynomial. In this paper, two different vulnerability parameters of graphs, tenacity and rupture degree are defined. In general, computing the tenacity o...
متن کاملApproximation Algorithms for Combinatorial Optimization
In combinatorial optimization, the most important challenges are presented by problems belonging to the class NP-hard. For such problems no algorithm is known that can solve all instances in polynomial time. It is also strongly believed that no polynomial algorithm is capable of doing this. Although it is very difficult to solve exactly any of the NP-hard problems, some of them are amenable to ...
متن کاملGlobal optimization of mixed-integer polynomial programming problems: A new method based on Grobner Bases theory
Mixed-integer polynomial programming (MIPP) problems are one class of mixed-integer nonlinear programming (MINLP) problems where objective function and constraints are restricted to the polynomial functions. Although the MINLP problem is NP-hard, in special cases such as MIPP problems, an efficient algorithm can be extended to solve it. In this research, we propose an algorit...
متن کاملSolving Linear Constraints in Elementary Abelian p-Groups of Symmetries
Symmetries occur naturally in CSP or SAT problems and are not very difficult to discover, but using them to prune the search space tends to be very challenging. Indeed, this usually requires finding specific elements in a group of symmetries that can be huge, and the problem of their very existence is NP-hard. We formulate such an existence problem as a constraint problem on one variable (the s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007